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LETTER TO THE EDITOR 

Route to chaos via strange non-chaotic attractors 
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t Department of Applied Mathematical Studies and Centre of Nonlinear Studies, University 
of Leeds, Leeds LS2 9JT, UK 
i Division of Dynamics and Control, University of Strathclyde, James Weir Building, 75 
Montrose St, Glasgow GI IXJ ,  UK 

Received 28 December 1989 

Abstract. The route to chaos in quasiperiodically forced systems is investigated. I t  has 
been found that chaotic behaviour is obtained after breaking of three-frequency torus, but 
strange non-chaotic attractors are present before three-frequency quasiperiodic behaviour 
occurs. 

Ruelle and Takens [ 11 suggested that strange attractors could arise after a finite sequence 
of Hopf bifurcations. Later it was specified by Newhouse, Ruelle and Takens [2] that 
after three bifurcations strange attractors could arise. 

Recently it was found that there are two types of strange attractors [3-61. 
The word ‘strange’ refers to the geometrical structure of the attractor and an attractor 

which is not: 
a finite set of points; 
a limit cycle (closed curve); 
a smooth (piecewise smooth) surface; 
bounded by a piecewise smooth closed surface volume; 

is called a strange attractor. An attractor is chaotic if at least one Lyapunov exponent 
is positive (typically nearby orbits diverge exponentially with time). From what was 
said above, one finds that a strange non-chaotic attractor is an attractor which is 
geometrically strange, but for which typical orbits have non-positive Lyapunov 
exponents. 

Ding et a1 [4] suggested that the route to chaos from two-frequency quasiperiodicity 
on a T 2  torus is via three-frequency quasiperiodicity on a T3 torus and strange 
non-chaotic attractors. In this letter we investigate the Ruelle-Takens-Newhouse route 
to chaos in the systems with two-frequency quasiperiodic forcing, i.e. from a TZ torus 
to chaos. The aim of this work is to show that the route 

two-frequency quasiperiodicity + strange non-chaotic attractors 
+ three-frequency quasiperiodicity 

--* strange chaotic attractors (1) 
is possible and that the T2 torus breaks before creation of the T 3  torus. 

First consider van der Pol’s oscillator: 
f + d ( x 2  - 1)x + x = a cos ut cos at (2) 
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where a, d, w, R are constants. We considered a = d =5.0, a=&?+ 1.05 and W E  

[0,0.01]. Equation (2) has four-dimensional phase space: 

(x, 1, 0, = of, 02 =at) E R 2  x SI x SI. 

We can reduce the study of (2) to the study on an associated three-dimensional Poincari 
map obtained by defining a three-dimensional cross section to a four-dimensional 
phase space by fixing the phase of one of the angular variables and allowing the 
remaining three variables that start on the cross section to evolve in time under 
the effect of the flow generated by (2) until they return to the cross section. If we 
fix the phase 02, the PoincarC map is defined as a set: 

M ( t o ) = { ( x ( f , ) ,  X(t,),  @ , ( t , ) ) l t ,  =2rIn/R+t0,  n = 1 , 2 , .  . . }  

where lo is initial time. To describe the surface of the PoincarC map we plot 

x( t , )  against x( t , ) .  

Alternative surfaces can be obtained by plotting x( 1 , )  against O , (  t , ) ,  and x( t , )  against 
O , ( t , )  mod 2II. Of course, to characterise the attractor we also used Lyapunov 
exponents given by: 

A =lim((l/t)ln[d(t)/d(r,)]} 
t - a  

where d = J l y 2 + j 2 1  and y denotes the solution of the equation variational to (2). 
The winding number for orbit x ( t )  of (2) defined by the limit 

w = lim { ( a (  t )  - a(  to) ) /  t }  
1 - o t  

where (x, x) = ( r  cos a, r sin a )  is another quantity. 
The plot of the Lyapunov exponent against w has been shown in figure 1 (the 

largest non-zero exponent has been taken). For two-frequency quasiperiodic behaviour 
we have a negative Lyapunov exponent and winding number fulfilling the relation: 

w = ( l / n ) w  + ( m / n ) R  (3) 
where 1, m, n are integers. With further decrease of w, the Lyapunov exponent is still 
negative but the winding number does not satisfy relation (3) and we have the example 
of a strange non-chaotic attractor. When the winding number does not satisfy relation 
(3) and the Lyapunov exponent is zero, three-frequency quasiperiodic behaviour is 
present (point F3 in figure 1 ) .  No evidence of three-frequency quasiperiodic behaviour 
has been found in the transition from two-frequency quasiperiodic behaviour to the 
strange non-chaotic attractor. This type of behaviour is present on the boundary 
between strange non-chaotic behaviour and chaos. In figure 2( a ) - (  c )  the PoincarC 
map is shown for two-frequency quasiperiodic, strange non-chaotic and strange chaotic 
behaviour. In the case of both strange attractors the PoincarC map has the same 
structure. In figure 2(a) we observe that the strange non-chaotic attractors do not exist 
on the T 2  torus as this figure shows that it is broken. We investigated 1200 different 
attractors of system (2) and in all examples we observed the same sequence ( 1 )  and 
the same properties of the Poincari map as described in figure 2. 

Finally consider the map: 

@,+, = [@, + 2llK + V sin CP, + C cos O n ]  

On+l = [On +2llU] (4) 
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Figure 1. The largest non-zero Lyapunov exponent of equation (2)  against U ;  a = d = 5, 
R = a+ 1.05. 
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j Figure 2. Poincare maps of (2) ;  ( a )  w =0.3, 
( b )  0=0.005, ( c j  w =0.001. 
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Figure 3. Lyapunov exponent ( 5 )  
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Figure 4. Phase space plots of the orbits of map (4); 
( a )  V =  1.018, ( 6 )  V =  1.090, ( c )  V =  1.110. 
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where K ,  V ,  C and w are constants, w is irrational (in our numerical experiments the 
golden mean w =(A- 1)/2 has been taken) and the square brackets indicate that 
modulo 2H of the expression is taken. In [4] it was shown that the transition from 
quasiperiodicity to chaos leads through the region where strange non-chaotic attractors 
are present. In figure 3 the plot of Lyapunov exponent: 

is shown against V. Up to V =  1.067 condition (3) is fulfilled, but for larger values of 
V we observe the transition to strange non-chaotic attractors. Strange non-chaotic 
attractors occur again before three-frequency quasiperiodicity. In figure 4( a)- (  c)  phase 
space plots of the orbits corresponding to two-frequency quasiperiodicity, strange 
non-chaotic and chaotic behaviours are shown for the V values indicated in figure 3. 

To summarise, in this letter we show that the possible route to chaos in two-frequency 
quasiperiodically forced systems is as follows: two-frequency quasiperiodicity + strange 
non-chaotic attractors + three-frequency quasiperiodicity + chaos. 
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